Esponente dispari
o
- i segni all’interno della seconda parentesi si alternano, positivo –negativo, il segno all’interno della prima parentesi è uguale a quello all’interno al polinomio base.
- l’esponente del 1°membro decresce, parte con un numero in meno rispetto a quello base e arriva a esponente=0, in questo caso partirà da 7-1.
-
Matematica
Ordina per: Data ↓ Nome ↑ Download Voto Dimensione ↑
INTORNO CIRCOLARE APERTO: si chiama intorno circolare aperto di un punto P0 un qualunque cerchio di centro P0 e raggio a piacere, privato della circonferenza.
PUNTO DI ACCUMULAZIONE: un punto P0 si dice punto di accumulazione se in un qualsiasi intorno circolare aperto di P0 contiene almeno un punto diverso da P0 e appartenente ad AxB.~~~
dove a, b, c, d, p, q sono costanti reali e 0.
La matrice A= si chiama matrice dell’affinità. Le (0) si chiamano equazioni dell’affinità.
Per quanto detto un’affinità T è una corrispondenza invertibile. Si può dimostrare che la corrispondenza inversa, quella che alla coppia (X,Y) associa la coppia (x,y), che indichiamo con T è anch’essa un
SONO A VOLTE UTILI LE FORMULE PARAMETRICHE:
ESEMPIO: simmetria rispetto a quindi
_______________________________________________________________
NB: LE AFFINITÀ CHE NON SONO NÉ ISOMETRIE
NÉ SIMILITUDINI SI DICONO AFFINITÀ GENERICHE;
TRA QUESTE CI SONO LE DILATAZIONI:
ISOMETRIA DIRETTA:
generica equazione:
(le continue ammettono
primitiva e le costruisco)
4) Il 2° Teorema fondamentale del calcolo mi aiuta a descrivere in maniera più precisa l’insieme delle
PRIMITIVE di una funzione continua f: [a, b] → R .
Mi dice che differiscono tutte a meno di una costante.
CASO GENERALE
f: [a, b] → R limitata
SUDDIVISIONE~
3 Dimostrazione equazione generale della retta
(X- Xq)2+(Y-Xq) 2=r2
X2+ Y2-(2XqX) -(2YqY) +(Xq) +(Yq) 2 -r 2 =0
Se pongo
a = -2Xq Xq=
b = -2Yq Yq=
c = (Xq) 2+(Yq) 2-r 2 r=
Diventa quindi :
X2+Y2+aX+bY+c=0 EQUAZIONE GENERALE C
B Insieme d’arrivo Insieme d’immagini o Codominio.
Una funzione и definita costante se tutti gli elementi dell'insieme A sono uguali.
Quando entrambi gli insiemi hanno gli elementi numerici le oro funzione sono dette numeriche
In questo caso gli elementi vengono chiamati variabili.