y’ = (e alla x)
Goniometriche
y = sen x
D = R
y’ = cos x
y = cos x
D = R
y’ = -sen x
y = tg x
D = Dx x 90°+k180°0
y’ = 1/cos”x = 1 + tg”x
y = cotg x
D = Dx x 90°+k180°
y’ = 1/sen”x = 1 + cotg”x
y = arcsen x
D = D-1 - x 1
C = C-90° - y 90°
y’ = 1/ rad (1-x”)
y = arccos x
Matematica
Ordina per: Data ↓ Nome ↑ Download Voto Dimensione ↑
Teorema del quarto proporzionale
Date 3 grandezze A,B,C omogenee esiste ed è unica la grandezza D tale che A:B = C:D.
Grandezze direttamente proporzionali
Due insiemi di grandezze si dicono direttamente proporzionali se il rapporto tra due grandezze nel primo insieme è uguale al rapporto delle corrispondenti grandezze nel secondo insiem
Per traslare un punto
P1(x+a;y+b)
Per traslare una figura:
x1=x-a
y1=y+b
Omotetia di centro origine
x1=kx
y1=ky
ometetia di centro casuale
x1=Kx+x0(1-K)
y1=Ky+y0(1-K)
simmetria rispetto all’asse x
x1=x
y1=-y
simmetria rispetto a x=a
x1=2a-x
y1=y
~~~~...
Regimi di capitalizzazione ⇒ legge di calcolo del montante (semplice o composta)
Tasso d’interesse ⇒ rapporto tra interesse e capitale iniziale
Tasso unitario d’interesse ⇒ interesse per ogni unità di tempo e per ogni unità di capitale
Tasso annuo ⇒ tasso unitario d’interesse riferito ad un anno
Tasso percentuale ⇒ interesse per ogni uni
La rappresentazione grafica di una funzione di due variabili è piuttosto complicata, perciò spesso si fa ricorso alle linee di livello. La linea di livello vivono nel piano e sono i punti (x,y) per cui le funzioni ha lo stesso valore z = k.
Si definisce intorno di un punto P0(x0,y0) qualsiasi sottoinsieme di R^2 contenente un intorno circolare di
3) Il collezionista
Tom colleziona farfalle. Tiene i suoi esemplari in undici scatole. Ciascuna delle undici scatole contiene almeno una
farfalla. Otto di queste undici scatole ne contengono ciascuna almeno due, sei ne contengono ciascuna almeno quattro e due ne contengono esattamente cinque ciascuna. Di quante farfalle , come minimo, si
ASSIOMA DELL’AMPIEZZA: a ogni angolo è associato un numero reale non negativo, la sua ampiezza tale che:
- angoli congruenti a hanno uguale ampiezza
- ampiezza della somma di due angoli è uguale alla somma delle loro ampiezze.
DUE SEGMENTI, due angoli, due triangoli, due poligoni sono congruenti n esiste una isometria che li trasformi 1 2.~~
r = _F0_ (costante dielettrica relativa al mezzo)
Fm
Fm = k0_ ∙ Q1Q2 Fm = 1__ ∙ Q1Q2 (legge di Coulomb nella materia)
r r2 4
A dimostrazione di ciò, è sufficiente ripercorrere la storia della matematica dall'antichità fino ai nostri giorni per rilevare innumerevoli contraddizioni, aporie, antitesi e conflitti.
Alcuni semplici esempi:
La scuola pitagorica ed i suoi adepti non ammettevano l'esistenza dei numeri reali irrazionali, nonostante avessero
L’anno si considera:
• anno civile: di 365 giorni
• anno commerciale:di 360 giorni, in cui i mesi si considerano tutti di 3° gg
CAPITALE INIZIALE (C) è il valore del capitale impiegato all’inizio dell’operazione finanziaria, cioè il capitale messo a frutto.
L’INTERESSE (I) è compenso che spetta a colui che presta un capitale per un certo