Materie: | Appunti |
Categoria: | Matematica |
Voto: | 2.5 (2) |
Download: | 569 |
Data: | 16.04.2007 |
Numero di pagine: | 5 |
Formato di file: | .doc (Microsoft Word) |
Download
Anteprima
matematica-finanziaria_9.zip (Dimensione: 12.38 Kb)
trucheck.it_matematica-finanziaria.doc 66 Kb
readme.txt 59 Bytes
Testo
MATEMATICA FINANZIARIA
OPERAZIONI FINANZIARIE: le operazioni in cui avviene uno scambio di capitali, intesi come somme di denaro, riferiti a epoche diverse, in condizioni di certezza.
Operazioni finanziarie semplici Operazioni finanziarie complesse
Risultano dallo scambio fra una sola
prestazione e una controprestazione.
Le operazioni finanziarie sono sempre legate al fattore TEMPO.
La durata di un’operazione finanziaria è il tempo che intercorre tra la cessione del capitale e la sua completa restituzione.
L’anno si considera:
• anno civile: di 365 giorni
• anno commerciale:di 360 giorni, in cui i mesi si considerano tutti di 3° gg
CAPITALE INIZIALE (C) è il valore del capitale impiegato all’inizio dell’operazione finanziaria, cioè il capitale messo a frutto.
L’INTERESSE (I) è compenso che spetta a colui che presta un capitale per un certo tempo.
TASSO D’INTERESSE (i) è l’interesse prodotto dall’unità di capitale nell’unità di tempo.
MONTANTE (M) è il valore del capitale al tempo (t), cioè al termine dell’operazione finanziaria.
CAPITALIZZAZIONE SEMPLICE
Interesse semplice
I = C * i * t da questa formula si possono ricavare altre formule:
C = I / i * t t = I / C * i i = I / C * t
Montante a interesse semplice: la capitalizzazione viene effettuata solo una volta alla fine del periodo
M = C(1+i*t) FATTORE DI CAPITALIZZAZIONE SEMPLICE
C = M / (1+ i*t) t = M – C / C*i i = M – C / C*i
CAPITALIZZAZIONE COMPOSTA
Montante composto: la capitalizzazione degli interessi è periodica
M =C(1+i) n FATTORE FINANZIARIO DI MONTANTE
C =M/(1+i)n = M*(1+i) - n FATTORE FINALE DI SCONTO
C M M* v n TRASFERIMENTO INDIETRO NEL TEMPO
C M C* u n TRASFERIMENTO IN AVANTI NEL TEMPO
FATTORE DI CAPITALIZZAZIONE u n = (1+i)n
FATTORE DI SCONTO v n = (1+i)-n
I = n √ (M/C) - 1
n = log M / C (applico i logaritmi perché l’incognita è all’esponente)
log(1+i)
CAPITALIZZAZIONE FRAZIONATA: operazioni finanziarie ad un tasso frazionato
TASSI EQUIVALENTI: due tassi sono equivalenti se, investendo lo stesso capitale per uno stesso periodo di tempo diversamente frazionato, si ottiene lo stesso montante
Ik = k√1+i -1 (ex: se si passa dai mesi agli anni)
I = (1+ik)k -1 ( ex: se si passa dagli anni ai mesi)
LA COSTITUZIONE DI CAPITALE
Volendo disporre, fra un certo numero di anni, di una somma per l’acquisto di un bene, è necessario accantonare periodicamente dei capitali affinché il loro montante sia pari alla somma stabilita.
Un’operazione finanziaria di questo tipo ha una durata piuttosto lunga e può essere utile sapere dopo un certo numero di anni l’entità dei versamenti effettuati fino a quella durata.
FONDO DI COSTITUZIONE: si indica con fk, è il montante dei primi k versamenti effettuati.
Per visualizzare l’andamento nel tempo dell’operazione finanziaria, bisogna redigere un piano di costituzione.
anni
Fondo inizio anni
rata
interessi
Fondo fine anno
Calcolo della rata:
versamenti anticipati versamenti posticipati
S = Ra i R = S S = Rs i R = S
s i s i
RENDITE FRAZIONATE: sono le rendite in cui il periodo che intercorre tra il pagamento di una rata e la successiva è una frazione costante di anno.
Una volta fissata la rata del periodo è possibile utilizzare uno dei seguenti tassi: ik tasso periodale effettivo, jk tasso nominale convertibile, i tasso annuo.
Per questo tipo di rendite è indispensabile uniformare le unità di misura delle varie grandezze riferendo tutto al periodo.
AMMORTAMENTO: pagamento periodico sia degli interessi maturati sia del
Capitale.
1. AMMORTAMENTO UNIFORME O A QUOTE COSTANTI DI CAPITALE (chiamato anche italiano)
Questo metodo consiste nel restituire, ad ogni scadenza quote di capitale tutte uguali ed interessi maturati durante il periodo trascorso.
C = quote capitali
anni
C
Ik
R (C+Ik)
Ek
Dk
O
-
-
-
-
A
Ik = quote
Ek = debito estinto
Dk = debito residuo
NB. Le quote di capitali (C) sono costanti
Le quote decrescono in progressione aritmetica di ragione d = c * i
2. AMMORTAMENTO PROGRESSIVO (chiamato anche francese)
Le rate sono: tutte uguali fra loro
vengono pagate ad intervalli di tempo costanti
sono (di solito) annuali e posticipate
Le quote di capitale risultano crescenti in progressione geometrica di ragione (1+i)
anni
rata
quota
Debito
Interes Ik
Capitali Ck
Estinto Ek
Residuo Dk
-
-
-
-
A
Ck = R- Ik
Ek = somma delle Ck
Dk = S - Ek
3. AMMORTAMENTO AMERICANO (chiamato anche a due tassi)
con questo metodo il debitore deve costituire un capitale attraverso n versamenti periodici valutati ad un tasso i’ (generalmente diverso da i), stipulato con una banca.
Ad ogni periodo, il debitore paga l’interesse al creditore e versa la rata (di costituzione del capitale) alla banca.
RENDITA: è una successione di somme che si rendono disponibili in determinate scadenze;
RATA: ciascuna somma versata
RENDITA TEMPORANEA: il numero delle rate è limitato
RENDITA PERPETUA: il numero delle rate è illimitato
RENDITA ANTICIPATA: rendita nella quale ciascuna rata è esigibile all’inizio del periodo
RENDITA POSTICIPATA: rendita nella quale ciascuna rata è esigibile alla fine del periodo
VALORE ATTUALE delle rendite è la somma dei valori attuali delle singole rate riferiti all’istante in cui viene costituita la rendita stessa
Valore attuale è la somma di n termini di una progressione geometrica di ragione (v)
Valore attuale di una rendita anticipata Va = R* 1-(1+i)-n (1+i)
Valore della rendita all’atto del primo versamento i
Valore attuale di una rendita posticipata Va = R* 1-(1+i)-n
Valore della rendita un anno prima del primo versamento i
MONTANTE delle rendite è la somma dei montanti delle singole rate riferite alla fine dell’ultimo periodo
Montante è la somma di n termini di una progressione geometrica di ragione (u)
Montante di una rendita anticipata M = R* (1+i)n -1 (1+i)
Valore della rendita un anno dopo l’ultimo versamento i
Montante di una rendita posticipata M = R* (1+i)n -1
Valore della rendita all’atto dell’ultimo versamento i
SUCCESSIONE: è una funzione fra numeri naturali e numeri reali
a1 a2 a3 a4 a5 …… an
PROGRESSIONE ARITMETICA: è ogni successione di tre o più numeri reali, tali che la differenza tra ciascuno di essi e il precedente sia costante
I numeri della progressione si dicono termini
÷ a1 a2 a3 a4 a5 …… an
La differenza costante tra un termine e il precedente si indica con la lettera d ed indica la ragione
• Se ar e as sono due termini qualunque di una progressione aritmetica risulta che: an = a1+(n-1)*d
• La somma dei primi n termini di una progressione aritmetica è:
sn = a1+an * n
2
PROGRESSIONE GEOMETRICA: ogni successione di tre o più numeri reali tali che il quoziente tra ciascuno di essi e il precedente sia costante.
Il quoziente costante tra un termine e il precedente si indica con la lettera q e viene detto ragione
• Relazione fra i termini di una progressione geometrica
an = a1 * q n-1
• Somma dei termini consecutivi di una progressione geometrica
Sn = a1 1- q n
1-q