La prima è facilmente dimostrabile ponendo .
La seconda invece si pone .
Integrazioni delle funzioni razionali fratte
In questo caso risolveremo integrazioni di questo tipo:
e
Sapendo che si possono presentare tre casi differenti.
Delta maggiore di zero
Sapendo che si possa scomporre un polinomio di secondo grado nel seguent
Matematica
Ordina per: Data ↑ Nome ↑ Download Voto Dimensione ↑
...
Due segmenti orientati sono equipollenti se hanno lunghezza nulla oppure se hanno lunghezza, direzione e verso uguali.
Una classe di equipollenza è costituita da tutti e soli i segmenti orientati equipollenti ad un altro segmento.
AB, CD della figura sopra appartengo
cos(A+B)=cosAcosB-senAsenB
cos(A-B)=cosAcosB+senAsenB
cos(2A)=cos2A-sen2A
sen(A+B)=senAcosB+cosAsenB
sen(A-B)=senAcosB-cosAsenB
sen2A=2senAcosA
tg(A+B)=(tgA+tgB)/(1-tgAtgB)
tg(A-B)=(tgA-tgB)/(1+tgAtgB)
tg(2A)=(2tgA)/(1-tg2A)
loga(BC)=logaB+logaC
loga(B/C)=logaB-logaC
loga(BM/N)=(M/N)logaB
loga(1/A)=-...
...
Gradi
Rad
Sen
Cos
Tan
Cotan
0°
0
1
Ø
30°
45°
1
1
60°
90°
1
0
120°
135°
-1
-1
150°
180°
π
-1
Ø
210°
225°
1
240°
270°
-1
300°
315...
Z Re {Z} Imm {Z}
6 6 0
-3+j4 -3 4
-2-j5 -2 -5 I lungh vettore: Z
j4 0 4 angolaz: φ
Z
SOMMA:
Zs: Z1+Z2 = (X1+X2)+j(J1+J2) φ
I NUMERI REALI
§1. La definizione di numero
Definizione fondamentale. Un insieme A={a, b, c,...} si dice insieme numerico, ed i suoi elementi a, b, c,... si chiamano numeri, se all'interno di A sono definite
I) una relazione interna, detta uguaglianza =, con le proprietà delle relazioni di equivalenza
1) riflessiva: a=a;~~~~...