Half Adder, Full Adder

Materie:Appunti
Categoria:Elettronica
Download:175
Data:06.11.2000
Numero di pagine:4
Formato di file:.doc (Microsoft Word)
Download   Anteprima
half-adder-full-adder_1.zip (Dimensione: 34.26 Kb)
trucheck.it_half-adder,-full-adder.doc     659.5 Kb
readme.txt     59 Bytes



Testo

RELAZIONE DI ELETTRONICA
Realizzata da: Curletta Daniele, Falcioni Silvia, Falzetti Marta, Torresetti Simone.
Classe: 3°G
Voglio costruire un circuito capace di prendere un bit A e un bit B e li sappia sommare ed eventualmente indicare il riporto.

B1 A1 C1 B0 A0

F.A. H.A.
Sommatore Mezzo
Completo Sommatore
S1 S0

C2 C1

Dato un problema non ambiguo costruiremo in questo problema una tabella di verità, poi ci ricaveremo la funzione canonica che verrà tradotta in un circuito elettronico digitale.
Oppure costruita la tabella di verità si può passare direttamente con l’algebra di Boole o le mappe di Karnaught per ottenere una funzione semplificata, che ci darà un circuito digitale.
I circuiti elettronici vengono normalmente distinti in due categorie:
a) circuiti analogici;
b) circuiti digitali;
La differenza deriva dalle caratteristiche dei segnali con cui lavorano questi circuiti.
Si ha un segnale analogico quando questo può variare con continuità, assumendo nel tempo tutti i valori compresi in un certo intervallo.
Si ha invece un segnale digitale quando questo non varia con continuità, ma può assumere solo valori ben determinati.
Il caso più diffuso di segnale digitale è quello binario. Ai due possibili valori del segnale binario si associano convenzionalmente i numeri 0 e 1.
Si definisce variabile logica binaria una variabile che può assumere solo due valori a cui si fa corrispondere, convenzionalmente, lo stato logico 0 e lo stato logico 1.
I circuiti combinatori rispondono in uscita tenendo conto solo degli ingressi e non dello stato. I circuiti sequenziali dipendono dall’ingresso attuale e precedente che ha creato lo stato del sistema.
L’algebra booleana ideata da George Boole (1815-1864) si adatta all’elettronica digitale binaria, con la sostituzione dell’affermazione vera/falsa con i valori 1/0.
L’algebra di Boole si basa sui seguenti assiomi:
1*1=1 0+0=0
1*0=0 0+1=1
0*1=0 1+0=1
0*0=0 1+1=1
1=0 0=1
Le mappe di Karnaugh è un procedimento di semplificazione che permette di arrivare dalla tabella di verità o da una espressione canonica a espressioni minime del tipo somma di prodotti o del tipo prodotti di somme.
Quindi secondo i criteri dell’algebra booleana ci siamo costruiti le tabelle di verità per l’Half Adder e per il Full Adder e le relative mappe di Karnaugh:

HALF ADDER

B0
A0
S0
C1

1
1

1

1

1
1

1
1

1

FULL ADDER

B1
A1
C1
S1
C2

1
1

1

1

1
1

1
1

1

1

1

1
1
1

1
1
1
1
1
1

0 0 0 1 1 1 1 0
1
1
1
1

0 0 0 1 1 1 1 0
1
1
1
1

Dalle tabelle della verità siamo potuti risalire ai seguenti circuiti elettrici:
HALF ADDER

FULL ADDER

A questo punto abbiamo costruito il circuito elettrico seguendo i disegni da noi eseguiti e cioè applicando sulla breadboard gli integrati and o or a seconda delle porte logiche. Successivamente abbiamo collegato con dei fili i piedini degli integrati tra di loro osservando le entrate e le uscite in un manuale. Poi abbiamo aggiunto due resistenze e due led luminosi per le uscite (S0 ,C1, S1,C2 ).
Infine abbiamo provato le combinazioni delle entrate e abbiamo osservato che i collegamenti erano stati ben eseguiti e poiché per ogni entrata avevamo un’uscita.

Esempio