Stelle

Materie:Appunti
Categoria:Astronomia

Voto:

2.5 (2)
Download:135
Data:08.06.2000
Numero di pagine:4
Formato di file:.doc (Microsoft Word)
Download   Anteprima
stelle_1.zip (Dimensione: 4.53 Kb)
trucheck.it_stelle.doc     24.5 Kb
readme.txt     59 Bytes


Testo

Evoluzione delle stelle
Una stella nasce da una nube di gas e polveri relativamente fredda, con densità migliaia di volte maggiore di quella della circostante materia interstellare. La contrazione di questo gas, e il suo conseguente riscaldamento, continua finché la stella si trasforma in una protostella che emette radiazioni elettromagnetiche nella banda dell'infrarosso. La temperatura interna cresce ulteriormente fino a raggiungere un valore di circa 1.000.000 °C, sufficiente perché si inneschino le reazioni nucleari che trasformano l'idrogeno e il deuterio (il cosiddetto idrogeno pesante) in elio, con conseguente emissione di una grande quantità di energia nucleare. In questo stadio la contrazione si arresta e la stella vive una fase di stabilità.
Quando l'idrogeno comincia a esaurirsi, il rilascio di energia nucleare cessa, la contrazione riprende e la temperatura aumenta fino a innescare nuove reazioni nucleari, che coinvolgono idrogeno, litio e altri elementi leggeri presenti nella stella. Si ha quindi una seconda fase di relativa stabilità che si interrompe quando il litio e gli altri elementi leggeri sono perlopiù esauriti e riprende la contrazione. La stella entra così nella fase finale della propria evoluzione, durante la quale l'idrogeno viene trasformato in elio attraverso l'azione catalizzante del carbonio e dell'azoto. Questa reazione nucleare è caratteristica delle stelle di sequenza principale citate sopra e continua fino a quando viene consumato tutto l'idrogeno disponibile. La stella si gonfia gradualmente, diventa una gigante rossa, e raggiunge la dimensione massima quando tutto l'idrogeno del nucleo è stato trasformato in elio. Per continuare a brillare, la temperatura al centro deve aumentare abbastanza da innescare la fusione dei nuclei di elio. Quando tutte le possibili fonti di energia nucleare sono esaurite, la stella si contrae e diventa una nana bianca. Questo stadio finale può essere caratterizzato dall'esplosione come nova, accompagnata dall'emissione nel mezzo interstellare di elementi più pesanti dell'idrogeno. Da questo materiale si formeranno le successive generazioni di stelle. Quando la fase finale dell'evoluzione di una stella non è esplosiva, si formano nebulose planetarie, cioè nubi sferiche di gas che emettono radiazione elettromagnetica.
Le stelle con massa migliaia di volte superiore a quella solare evolvono rapidamente, giungendo allo stadio di supernova in pochi milioni di anni e lasciando come resto una stella di neutroni. Esiste un limite per la massa di questi oggetti, oltre il quale essi continuano a contrarsi fino a diventare un buco nero. Stelle medie come il Sole hanno vite di molti miliardi di anni. L'evoluzione finale di una stella di piccola massa non è nota, a parte il fatto che essa smette di emettere luce in maniera apprezzabile. Probabilmente esse diventano nane brune, cioè stelle molto fredde che si estinguono lentamente.
Nebulosa Massa di gas e di particelle di polvere situata nello spazio interstellare.
Le ricerche mostrano che esse possono brillare secondo due meccanismi: o perché riflettono la luce delle stelle in esse contenute (nelle nebulose cosiddette a riflessione), oppure, nelle nebulose a emissione, perché emettono radiazione proveniente dal gas e dalle polveri ionizzati presenti all'interno della nebulosa stessa.
Le nebulose oscure sono completamente nere o poco luminose e nascondono del tutto le regioni di cielo retrostanti; sono troppo distanti da qualunque stella per riflettere o emettere luce in grande quantità.
Le novae sono stelle in una fase avanzata dell'evoluzione; si pensa che si tratti di un particolare tipo di stelle variabili, il cui comportamento è probabilmente da ricondurre a un eccesso di elio prodotto durante le reazioni nucleari, che si localizza negli strati più esterni del corpo stellare, causando un rapidissimo processo di espansione. La stella, divenuta instabile, emette una piccola frazione della propria massa sotto forma di guscio di gas, aumentando perciò la propria luminosità, e poi raggiunge una fase di stabilità. Il risultato dell'evento esplosivo è generalmente una nana bianca che spesso appartiene a un sistema doppio, del quale rappresenta il membro di massa minore, soggetto a una continua caduta di materia dalla stella più massiva. Ciò accade sempre, probabilmente, nel caso delle novae nane, che mostrano un comportamento periodico a intervalli regolari di durata variabile tra qualche giorno e qualche centinaio di giorni.
Le pulsar sono intense sorgenti di impulsi radio. L'energia che esse irradiano nello spazio appare in rapida pulsazione con periodi estremamente regolari, che variano da alcuni secondi a piccolissime frazioni di secondo. Solo con i più precisi orologi è possibile rivelare le variazioni del periodo di pulsazione e i dati raccolti indicano che è necessario circa un milione di anni perché esso raddoppi.
I risultati delle analisi degli spettri di emissione suggeriscono che le pulsar siano stelle di neutroni in rapida rotazione, del diametro di una quindicina di km e con densità elevatissima.
Buco nero Corpo celeste dotato di un campo gravitazionale talmente intenso da trattenere anche la radiazione elettromagnetica. Il corpo è circondato da un confine ideale sferico, detto "orizzonte degli eventi", attraverso il quale la luce può entrare ma non uscire; da ciò deriva il nome. Un buco nero può essere un corpo di densità elevatissima, avente una massa relativamente piccola, come quella del Sole o anche minore, compressa in un volume ridotto; oppure un corpo di bassa densità, ma di massa enorme, pari a milioni di volte la massa del Sole, posto nel centro di una galassia.
buchi neri rappresentano lo stadio finale dell'evoluzione di alcune stelle. Quando il carburante di una stella si esaurisce, l'aumento di pressione associato al calore prodotto dalle reazioni nucleari non è sufficiente per contrastare il processo di contrazione della stella. In queste condizioni, a seconda dei valori della densità, può avvenire la formazione di una nana bianca oppure di una stella di neutroni. Se la massa del nucleo supera di 1,7 volte la massa del Sole, nessuna pressione è sufficiente ad arrestare il collasso e si genera un buco nero.

Esempio